A NOVEL SMALL RING FORMATION USING METHYLSULFINYL GROUP AS A LEAVING GROUP

Yoshio Ueno, Yoshiro Masuyama, and Makoto Okawara Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, Japan 152 (Received in Japan 13 May 1974; received in UK for publication 17 June 1974)

In our previous paper we reported the preparation of four-membered heteronium salts (I) from bis(dithiocarbamates) (II) on treatment with acid or dimethyl sulfate¹.

$$\begin{array}{c} \text{Ar-CH} & \overset{\text{SCSNR}_2}{\underset{\text{SCSNR}_2}{\text{ ar-CH}}} \xrightarrow{\text{H}^{+} \text{ or } \text{Me}_2 \text{SO}_4} & \text{Ar-CH} & \overset{\text{S}}{\underset{\text{SCSNR}_2}{\text{ c=}}} x^{-} (80-90\$) \\ \end{array}$$

However, applications of this reaction to methylene-(IIa)² and ethylidenebis(N,N-dimethyldithiocarbamate) (IIb)² using Me_2SO_4 resulted in the formation of corresponding heteronium salts only in poor yields as described bellow.

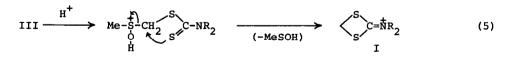
$$\begin{array}{c} \text{SCSNMe}_{2} & \underbrace{1 \ \text{Me}_{2}\text{SO}_{4},90-110^{\circ},1 \ \text{hr}}_{\text{SCSNMe}_{2}} & \underbrace{2 \ \text{ag. NaBPh}_{4}}_{\text{2}} & \text{R-CH} & \underbrace{\text{SC=Nme}_{2} \ \text{BPh}_{4}}_{\text{SCSNMe}_{2}} & \underbrace{\text{BPh}_{4}}_{\text{2}} & (1) \\ \text{IIa R=H, mp: 150-2^{\circ}}_{\text{BR=Me,mp: 105-6^{\circ}}} & 23\% & (\text{R=H}) \\ \end{array}$$

Strong acids such as $c.H_2SO_4$ or 70% $HClO_4$ were not effective for the cyclization of IIa and IIb. So we sought the more acid-sensitive eliminating group than thiocarbamoylthic group ($R_2NCS-S-$) and found facile cyclization of the compound (III) having methylsulfinyl group (MeSO-) as an eliminating group.

$$\begin{array}{c} \text{SOMe} & \text{H}^{+} & \text{CH}_{2}^{-} \text{SCSNR}_{2} & \text{CH}_{2}^{-} \text{$$

Methylsulfinylmethyl N,N-dialkylditbiocarbamates(IIIa-d) were prepared by

the reaction of chloromethyl methylsulfoxide $(MeSOCH_2Cl)^3$ with appropriate sodium N,N-dialkyldithiocarbamates in EtOH at 50-60°C for 5 hrs. After the solvent was evaporated, the residues were poured into water and extracted with methylene chloride to give dithioesters in 78-82% yields. The results are summarized in TABLE I.


 $\frac{\text{MeSOCH}_2\text{Cl} + \text{NaSCSNR}_2}{\text{IIIa-d}} \xrightarrow{\text{MeSOCH}_2\text{SCSNR}_2} (3)$

		Yield(%)) Mp(°C)	$IR^{\nu}SO(cm^{-1})$	UV λ_{max}^{EtOH} (nm)
IIIa	MeSOCH2SCSNMe2	80	68-9	1035	245, 278
b	$MeSOCH_2SCSNEt_2$	79	57-8	1020	248.5, 280.5
с	MeSOCH2SCSN	78	94-5	1030	250, 281.5
đ	Mesoch ₂ scsn_0	82	120-1	1020	253, 283

Successful cyclization of III was found to take place only by dissolving the dithioesters III in 95% H_2SO_4 or 70% $HClO_4$ at room temperature in high yields. The products were isolated as tetraphenylborate by anion exchange on treatment with aq. NaBPh₄. The results are summarized in TABLE II.

$$\underset{\text{IIIa-d}}{\text{MeSOCH}_2\text{SCSNR}_2} \xrightarrow{1) \text{H}_2\text{SO}_4\text{or HClO}_4, \text{r.t., 0.5-1 hr}}_{2) \text{ aq. NaBPh}_4} \xrightarrow{\text{S}}_{\text{Ia-d}} \xrightarrow{\text{S}}_{\text{S}} \xrightarrow{\text{C=NR}_2}_{\text{Ia-d}} (4)$$

A plausible mechanism for the formation of (I) from (III) may be shown by the following reaction scheme. Thus the initial protonation at sulfoxide oxygen atom and successive elimination of methyl sulfenic acid seems to lead the cyclization products I.

Products via the initial protonation at thiocarbonyl sulfur atom were not obtained at all. ($Me-S-CH_2-S-C_2-NR_2$)

TABLE I. Methylsulfinylmethyl N,N-dialkyldithiocarbamates (III)⁴

a) Ie was prepared by the method described in eq. (1).

This new cyclization reaction seems to be quite general and to be successfully applicated to the other hetero atom systems such as N,N,S as formulated bellow.

$$MeSOCH_{2}Cl + RNH-CS-NHR \longrightarrow MeSOCH_{2}S-C \xrightarrow{NHR} Cl^{-} \xrightarrow{1) H_{2}SO_{4}} 2) aq. NaBPh_{4}$$

$$IVa R=H$$

$$b R=Me$$

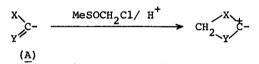
$$K = Me$$

Isothiuronium chlorides IVa and IVb were prepared on the reaction of chloromethyl methylsulfoxide with thioureas in neat conditions at 85° C for 10 hrs. The salts IVa and IVb were recrystallized from ethanol. On treatment of IV with c.H₂SO₄ in a similar manner as described before, new cyclization products, 1,3-thiazetidin-2-ylium salts V were obtained in high yields. These results are summarized in TABLE III. The four-membered cation Va and Vb were recrystallized from acetone (or acetone-water).

TABLE II.2-Dialkylamino-1,3-dithietan-2-ylium tetraphenyl borates Ifrom Methylsulfinyl derivatives III

 $1 2 \text{ pithistor } 2 \text{ where } 2^{1}$

This indicates that	the methylsulfinyl	group is more	acid-sensitive than
thiocarbamoylthio group	(R ₂ NCS-S-).		


1,3-Dithietan-2-ylium salts (BPh_{4}^{-})	Yield (%)	Mp(°C)	(cm^{-1})	UV X _{max} (nm)	$\delta(-SCH_2S-)$
Ia SC=Me2	65	194-5	1630	238	4.05
▶ <s>c=ħet2</s>	78	107-8	1600	239	3.84
c <s>c=t</s>	80	111-2	1615	239	4.10
d < <mark>s</mark> ⊂=t⊂o	53	125-6	1610	240	4.16
$e Me - s^{S} c = \overline{M}Me_{2}^{a}$	39	192-4	1640	231	4.56 (Me-C <u>H</u> <)

LIN SETOH NMP (DMCOrd)

		(%)	Mp(°C)	IR(cm ⁻¹)	NMR(DMSO-d ₆ , ٥)
IVa	Mesoch ₂ s-c ^{/ħH} 2 c1 ⁻	60	134-5	1640 (C=N) 1020 (SO)	
IVb	меsocн ₂ s-с с1		137-8	1630 (C=N) 1010 (SO)	
	S tu an -	84 127-8 1640 (C=Å)	107 0	acco ca ta	4.44 (CH ₂ ,s,2H)
Va	SC=NH2 BPh4		164U (C=N)	7.68 (NH,br.,3H) 8.00	
Vb	SC=NHME BPh 4 91		+	4.50 (CH ₂ ,d,J=16Hz,1H)	
		91	167-8	1630 (C=Å)	4.86 (CH ₂ ,d,J=16Hz,1H)
	Йe				9.40 (NH,br.,1H)

TABLE III. Isothiuronium and 1,3-Thiazetidin-2-ylium Salts⁴

In conclusion, methylene transfer from chloromethyl methylsulfoxide into adjacent hetero atoms X,Y in the compound of type <u>A</u> such as dithiocarbamate anion or thiourea gives the four-membered heteronium salts which are difficult to obtain in other methods.

References

- 1) Y. Ueno and M. Okawara, Chem. Lett., 863 (1973).
- These compounds are easily prepared quantitatively by the reaction of CH₂Cl₂ or CH₃CHBr₂ with sodium N,N-dimethyldithiocarbamate.
- 3) G. Tsuchihashi and K. Ogura, Bull. Chem. Soc. Japan, 44, 1726 (1971).
- All new compounds in this letter gave satisfactory elemental analyses and spectral data.